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Novel approach to arylhydrazones, the precursor for Fischer
indole synthesis, via diazo esters derived from a-amino acid esters
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Abstract—A novel method for synthesizing arylhydrazones, the precursor for Fischer indole synthesis, using aryllithium reagents
and a-diazo esters that are easily obtained from a-amino acid esters, is described.
� 2005 Elsevier Ltd. All rights reserved.
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Scheme 1. Methods for synthesizing arylhydrazone.
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Indole compounds have important biological activities.
For example, melatonin and indole-3-propionic acid
(IPA) reduce reactive oxygen species that cause cellular
damage and prevent death of neurons exposed to amyl-
oid b-proteins, the agent responsible for Alzheimer�s
disease.1 Some indole derivatives function as dopamine
agonists and/or selective serotonin reuptake inhibitors
(SSRIs), the latter being a class of anti-depressants.2

Acemetacin3 and indometacin4 are clinically used as
anti-inflammatory drugs and fluvastatin sodium5 is a
well-known HMG-CoA reductase inhibitor. During
the course of our investigations on the synthesis of low
molecular weight compounds for use as anti-aging
drugs, we developed a novel method for synthesizing
arylhydrazones, the precursor for Fischer indole
synthesis.

Many methods for synthesizing indole derivatives have
so far been developed.6 Although Fischer indole synthe-
sis is a classic one, it is still a good tool for synthesizing
bioactive compounds. There are two ways to prepare
arylhydrazones: the condensation of carbonyl com-
pound with arylhydrazine (Scheme 1 (1)) and the
Japp–Klingemann reaction7 between an arenediazonium
salt and a malonic acid derivative (Scheme 1 (2)). We
report herein a novel method for synthesizing a variety
of arylhydrazones from a-diazo esters.

Takamura et al. reported the reaction of a-substituted-
a-diazo esters 1 with some bases and found that when
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1 was treated with n-BuLi in THF at �78 �C, the
reagent acted as a nucleophile rather than a base to give
hydrazone 28 (Scheme 2 (1)). Therefore, we expected
that arylhydrazone 3, the precursor for Fischer indole
synthesis, would be obtained when 1 was reacted with
aryllithium reagent (Scheme 2 (2)).

First, 4a, which was obtained by the diazotization of
ethyl phenylalaninate,9 was treated with 1 equiv of
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Scheme 2. Reaction of a-diazo esters with lithium reagents.
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phenyllithium in THF at �68 �C for 20 min. The reac-
tion mixture was neutralized with acetic acid and puri-
fied by silica gel column chromatography to give anti-
hydrazone 5a in 86% yield together with trace amounts
of minor syn product 5a 0.10 The stereochemistry of the
hydrazone was assigned according to a reported proce-
dure using NMR analysis.11 As the reaction was exo-
thermic, it was necessary to keep the reaction
temperature below �60 �C to prevent decrease in yield.
Grignard reagent was also used as a nucleophile for this
reaction. To a cooled solution (�68 �C) of 4a in THF
was added 1 equiv of phenylmagnesium bromide. The
reaction proceeded smoothly but more slowly than the
phenyllithium case. The yield was almost the same
(86%) and the stereochemistry of the major product
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Table 1. Yields of indole synthesis from a-diazo esters
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a The result of the reaction with PhMgBr.
b 2 equiv of PhLi was used.
c The reaction was performed at 100 �C.
d Isolation yield for two steps.
was also anti. Next, hydrazone 5a was subjected to
Fischer indole synthesis according to the reported meth-
od.12 Hydrazone 5a was treated with thionyl chloride in
ethanol for 40 min at 80 �C in a sealed tube, and the
reaction mixture was worked up and purified by silica
gel column chromatography to give the desired indole
6a in good yield (95%)13 (Scheme 3).

This reaction was then applied to other amino acid
esters that have a methylene group adjacent to the a-
carbon. The results are summarized in Table 1.

Diazo esters 4a–h were easily obtained according to a
known method.9 The diazo esters were reacted with
phenyllithium to give corresponding hydrazones 5a–h
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in good yields. Even glutamic acid and lysine derivatives
(4e and 4f) having acidic proton in the molecule gave
hydrazones 5e and 5f, respectively, in good yields. How-
ever, in the case of the diazo compound derived from
aspartic acid ester, the reaction gave a complex mixture.
From NMR analysis, the stereochemistry of all the
hydrazones was confirmed to be anti. Hydrazones 5a–h
were subjected to the indole cyclization reaction. Most
substrates gave the desired indoles in moderate to good
yields. The cyclization reaction of 5b hardly proceeded
at 80 �C, whereas 6b was obtained in 86% yield when
5b was cyclized at 100 �C. Only tryptophan derivative
5g did not give any product.

It became clear that many diazo esters derived from a-
amino acid esters could be converted into the corre-
sponding indoles. The diversity of aryllithium reagents
was next examined. If aryllithium reagents generated
in situ could react with diazo esters, the application of
this reaction would be extended because commercially
available aryllithium reagents are limited. For that pur-
pose, 4-substituted aryl bromides (1.5 equiv) were trea-
ted with n-BuLi (1.5 equiv) in THF at �68 �C to
produce aryllithium reagents and to the mixture was
added diazo compound 4a (1.0 equiv) (scheme in Table
Table 2. Yields of indole derivatives
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Scheme 4. Reaction mechanism of diazo ester and aryllithium.
2). The lithiation of aryl bromides and the subsequent
nucleophilic attack of the lithium reagents on diazo
compound 4a proceeded successfully (Table 2).

The anion of a-carbon of 9 0, which was formed by the
addition of aryllithium to the diazo moiety, stabilized
the ester carbonyl to give enolate 9 as shown in Scheme
4, and the ester survived despite the existence of excess
aryllithium species. However, when the nitrile group
was substituted on the para-position of phenyllithium,
the excess lithiated compound further reacted with the
ester moiety of 7o to give 7o 0 in 28% yield together with
the desired 7o in 46% yield.

All hydrazones 7i–o were converted into the correspond-
ing indoles 8i–o. The reaction time was dependent on the
electron density of the aromatic ring. In most cases (5a–
h, 7i–l), the cyclization was completed within 1 h, but
when an electron-withdrawing group (7m–o) was substi-
tuted on the aromatic ring, the reaction time became
longer. In the case of 7o, 23% of the starting material
was recovered even after heating at 80 �C for 3 h.

In summary, we developed a novel method for synthe-
sizing various aryl hydrazones, the precursor for Fischer
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indole synthesis, from a-substituted-a-diazo esters 1.
Utilizing the diazo compounds derived from various a-
amino acid esters and aromatic bromides having appro-
priate substituents, structurally complicated indoles can
be easily synthesized in short steps by this method.
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